Organic Chemistry

- introduction 1 -

Vladimíra Kvasnicová

Composition of Matter

· inorganic mater

- > oxygen (O) 50%
- > silicon (Si) 25%
- > aluminium (AI) 7%
- > iron (Fe) 5%
- > calcium (Ca) 3% 90%
- > sodium (Na)
- > potassium (K)
- > magnesium (Mg)
- hydrogen (H)
- > titanium (Ti) 0,6%

· organic mater

"compounds of carbon"

C, O, H, N

- > carbon (C)
- > oxygen (O)
- > hydrogen (H)
- > nitrogen (N)
- > phosphorus (P)
- > sulfur (S)

Valence of elements in organic compounds

(= number of bonds forming in organic compounds)

 CARBON always tetravalent (4 bonds)

NITROGEN trivalent (3 bonds)

 OXYGEN bivalent (2 bonds)

· SULPHUR bivalent (2 bonds)

HYDROGEN monovalent (1 bond)

 HALOGENS monovalent (1 bond)

Inorganic compounds

- · oxides
- peroxides
- hydroxides
- · acids

 $\frac{1}{C}$ CO, CO₂, HCN, H₂CO₃

Organic compounds

- · hydrocarbons
- hydrocarbon derivatives

nomenclature example: propane + derivatives

CH₄, CH₃OH, HCHO, HCOOH

organic derivatives of H₂CO₃ and H₃PO₄

Organic compounds

- "compounds of carbon"
- hydrocarbon skeleton: C, H
 (linear / branched / cyclic)
 - > saturated: CH₃-(CH₂)_n-CH₃
 - > unsaturated: -CH=CH- or -C=C-
- · heteroatoms: O, N, S, halogens
 - > <u>hetero</u>cyclic compounds
 - > hydrocarbon derivatives (often in "functional groups")
- · aliphatic or aromatic compounds

Types of bonds:

- 1) single (-ane)
 - → saturated hydrocarbons (called "alkanes")
- 2) double (-ene) or triple (-yne)
 - → unsaturated hydrocarbons (called "alkenes" and "alkynes")
- 3) conjugated bonds
 - = alteration of single and double bonds
 - → unsaturated hydrocarbons

Prefixes used to express the number of carbons found in an organic compound

number of C	prefix-			alkane		alkene			alkyne		cycloalkane	
1	meth-			methane		X			X		X	
2	eth-			ethane		ethene		ethyne		ne	×	
3	prop-			propo	ane	propene		propyne		ne	cyclopropane	
4	but-			buto	ane	butene		butyne		ne	cyclobutane	
5	pent-			pento	ane	pentene		pentyne		ne	cyclopentane	
6	hex-			hex	ane	hexene		hexyne		ne	cyclohexane	
7	hept-			hepto	ane	heptene		heptyne		ne	cycloheptane	
8	oct-			octo	ane	octene		octyne		ne	cyclooctane	
9	non-			nonc	ane	nonene		nonyne		ne	cyclononane	
10	dec-			deco	ane	decene		decyne		ne	cyclodecane	
11	undec-			undeco	ane	undecene		undecyne		ne		
12	dodec-			dodeco	ane	dodecene		dodecyne		ne		
13	tridec-		tridecane			tridecene		tridecyne		ne		
14	tetradec-		tet	radeco	ane	tetradecene		tetradecyne		ne		
	1	2	3	4	5	6	7	8	9	10	11	12
	1		<u> </u>	4	၂ ၁	0	/	0	9	10	11	
multiple prefix	mono	di	tri	tetra	penta	hexa	hepta	octa	nona	deco	a un deca	do deca

Naming organic compounds

- 1. IUPAC names = systematic names
 - > exact rules (prefixes, suffixes)

e.g. ethyne

- 2. common names = trivial names
 - > mostly no rules

e.g. acetylene

Formulas of organic compounds

molecular

 C_4H_{10}

 C_2H_6O

• structural CH3-CH2-CH2-CH3 CH3-CH2-OH

Chemical properties

- <u>hydrocarbons</u> are <u>hydrophobic</u> (= lipophilic) because are <u>nonpolar</u>
- <u>hydrocarbon derivatives</u>: polar functional group + nonpolar tail
- · reactivity:
 - > multiple bonds
 - > functional groups
- complete oxidation (= burning) of a hydrocarbon skeleton \rightarrow CO₂ + H₂O

Naming hydrocarbons

- find the longest linear chain: it is called "parent hydrocarbon chain"
- if <u>multiple bonds</u> are present they <u>must be included</u> in the parent chain
- call the parent chain using related prefix to express number of carbons and a suffix to express the type of the hydrocarbon
- 4. order substituents (if present) alphabetically
- 5. <u>number</u> the parent chain from its end which gives the <u>lovest locants</u> to multiple bonds and to <u>substituents</u> (multiple bond takes precedence)

Exercise

- add names of the compounds:

3.
$$CH_2=CH_2$$

4.
$$CH_3-CH_2-CH_2-CH_2-C=CH$$

5.
$$CH_3-(CH_2)_{10}-CH_3$$

Exercise

- add names of the compounds:

1.
$$CH_3$$
- CH_2 - CH_3 butane

2.
$$CH_3$$
- CH_2 - $CH=CH$ - CH_3 pent-2-ene

4.
$$CH_3-CH_2-CH_2-C=CH$$
 hex-1-yne

5.
$$CH_3$$
- $(CH_2)_{10}$ - CH_3 dodecane

Naming branched hydrocarbons

locant-substituent-prefix-locant of multiple bond-suffix

call the compound:

Naming hydrocarbons

- find the longest linear chain: it is called "parent hydrocarbon chain"
- if <u>multiple bonds</u> are present they <u>must be included</u> in the parent chain
- call the parent chain using related prefix to express number of carbons and a suffix to express the type of the hydrocarbon
- 4. order substituents (if present) alphabetically
- 5. <u>number</u> the parent chain from its end which gives the <u>lovest locants</u> to multiple bonds and to <u>substituents</u> (multiple bond takes precedence)

Naming hydrocarbons

locant-substituent-prefix-locant of multiple bond-suffix

other substituents than alkyls:

```
F = fluoro- / Cl = chloro- / Br = bromo- / I = iodo-
NO<sub>2</sub> = nitro-
```